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We derive the continuum equation for a discrete model for ion sputtering. We follow an approach based on
the master equation, and discuss how it can be truncated to a Fokker-Planck equation and mapped to a discrete
Langevin equation. By taking the continuum limit, we arrive at the Kuramoto-Sivashinsky equation with a
stochastic noise term.@S1063-651X~96!11210-1#

PACS number~s!: 64.60.Ht, 68.35.Rh, 05.40.1j, 79.20.Rf

I. INTRODUCTION

The field of nonequilibrium interface growth is currently
being investigated by a variety of approaches@1–3#. One
direction of research is the formulation of Langevin equa-
tions, which are studied by means of analytical and numeri-
cal methods. Typically, the terms appearing in Langevin
equations are derived by the use of symmetry arguments. A
different approach consists of the formulation of discrete
models which contain the relevant physical mechanisms
present in the problem at hand. The models are studied by
computer simulations in order to determine which universal-
ity class they belong to. One can try to relate the models to
continuum descriptions. In many occasions such an identifi-
cation is indirect since it is difficult to derive the continuum
description for a given set of microscopic growth rules.

There exist cases in which it is possible to derive Lange-
vin equations describing various discrete growth models
@4–7#. The approach followed in these cases is based on the
master equation which determines the evolution of the joint
probability densityP(H,t), whereH specifies the interface
configuration andt denotes time. The master equation reads

]P~H,t !

]t
5(

H8
W~H8,H !P~H8,t !2(

H8
W~H,H8!P~H,t !,

~1!

whereW(H,H8) denotes the transition rate per unit time
from configurationH to H8, and the sums are over all con-
figurationsH8. One can study the associated Fokker-Planck
equation and therefrom derive a continuum Langevin equa-
tion for the surface height provided the fluctuations in the
system are not too large, and provided the continuum limit
can be justified@8#. An important feature of the master equa-
tion approach is that it provides a relation between the fluc-
tuations ~noise! in the system and the parameters in the
model.

In the present paper, we follow the master equation ap-
proach in order to derive the continuum equation for a
simple pattern forming model recently introduced to study
the morphology of surfaces eroded by ion sputtering@9#. The
equation which we obtain for the evolution of the height
profile h(x,t) is a noisy version of the Kuramoto-
Sivashinsky~KS! equation and reads

]h

]t
5v02unu¹2h2k~¹2!2h1

l

2
~¹h!21h~x,t !, ~2!

wherev0, n, k, andl are constants, andh(x,t) is a Gauss-
ian white noise. Equation~2! coincides with a particular case
of a more general equation for ion-sputtered services studied
in @10#. The KS equation~obtained whenh50) @11# is often
considered a paradigm of spatiotemporal chaos and appears
frequently in studies of pattern formation@12#. An initially
flat one-dimensional interface described by the KS equation
evolves in time from an almost periodic morphology at early
times to a rough surface at late times@13–15# described by
the Kardar-Parisi-Zhang~KPZ! equation@16#.

The model for ion sputtering in Ref.@9# shows an initial
periodic morphology and a late-time KPZ scaling regime
which are similar to the behavior of the KS equation. How-
ever, the KS equation is a deterministic equation whereas the
erosion model is inherently stochastic. In@9# the early and
late time dynamics of the erosion model were numerically
studied with the conclusion that they are the same as those
obtained from the noisy KS equation@17#. Here, we confirm
this result by showing analytically that the noisy KS equation
yields the continuum description of the erosion model. By
using the master equation approach, we determine the con-
tributions of the intrinsic noise to the evolution equation for
this simple pattern forming model.

II. EROSION MODEL

The model introduced in Ref.@9# considers an interface in
111 dimensions described by the height variablehi(t),
i51, . . . ,L, whereL is the system size. The sites below the
interface are occupied with particles, whereas the sites above
are empty. The lattice unit distance along the horizontal di-
rection is denoted bya. The derivation of the noisy KS equa-
tion can be generalized tod11 dimensions but in the fol-
lowing we discuss the 111 dimensional case.

The two basic physical mechanisms acting on the surface
are erosion and diffusion. In the model, a particle at the
interface is chosen randomly. Then, the particle is subjected
to an erosion rule with probabilityf , and to a diffusion rule
with probability 12 f .

The erosion rule is as follows: the particle athi is eroded
~the corresponding lattice position emptied! with probability
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PeYi @18#. The quantityPe is computed as 1/7 times the
number of occupied sites in a box of size 333 centered at
the chosen site, i.e.,Pe is the number of occupied nearest and
next-nearest neighbors of the particle athi , and takes the
values 1/7,2/7,. . . ,1. The definition ofPe accounts for the
unstable erosion mechanism which exists in the physical sys-
tems due to the finite penetration depth of the bombarding
ions into the eroded substrate@10,19#. The efficiency of the
sputtering process is measured by the sputtering yield@20#

Yi5Y~w i !5y01y1w i
21y2w i

4 , ~3!

with the local slopew i5tan21@(hi112hi21)/2a#. In @9#
y0, y1, and y2 were chosen such thatYi(0)50.5,
Yi(p/2)50, and with a maximum valueYi(wm)51 for
wm51 rad. In general one would merely require that
y0.0, y1.0, andy2,0 @20#.

The surface diffusion rule moves a particle at the interface
from the top of columnk to the top of a randomly chosen
nearest-neighbor column with the rates

wk
65

1

11exp~bDHk→k61!
, ~4!

where the energy isH5(J/b2)( i51
L (hi2hi11)

2 @21#, and
DHk→k61 is the energy difference between the final and ini-
tial configurations;J is a coupling constant,b is the unit
lattice spacing in the height direction, andb is the inverse
temperature.

III. STOCHASTIC FORMALISM

The interface configuration at a given timet is specified
by the set of column variablesH5$h1 ,h2 , . . . ,hL%. The
moments of the transition ratesW(H,H8) in Eq. ~1! are de-
fined as follows:

Ki
~1!5(

H8
~hi82hi !W~H8,H !, ~5a!

Ki , j
~2!5(

H8
~hi82hi !~hj82hj !W~H8,H !, ~5b!

Ki1 , . . . ,i n
~n! 5(

H8
S )
k51

n

~hk82hk!DW~H8,H !. ~5c!

The first step in order to derive the Langevin equation is to
transform the master equation~1! into a Kramers-Moyal par-
tial differential equation~see, e.g.,@22#!,

]P

]t
5 (

n51

`
~21!n

n!

]n

]hi1• • •]hin
~Ki1 ,...,i n

~n! P!, ~6!

where a sum over repeated indices is assumed.
Next, one identifies a parameterV such thatV→` de-

notes the macroscopic limit. Foruhi82hi u;O(1/V), the ratio
K (n11)/K (n) will typically be of orderO(1/V) @23#. If the
intrinsic fluctuations are sufficiently small, then only the
K (1) term in Eq. ~6! will survive in the limit V→` @24#.
However, in our case the intrinsic fluctuations are relevant.

Then, in the limitV→` the Kramers-Moyal expansion re-
duces to the Fokker-Planck equation

]P

]t
52

]

]hi
~Ki

~1!P!1
1

2

]2

]hi]hj
~Ki , j

~2!P!, ~7!

which is obtained from Eq.~6! by keeping only theK (1) and
K (2) terms@25#.

The Fokker-Planck equation can be used in the further
analysis of the system. However, only average quantities
such as, e.g.,̂ hi(t)&5(HhiP(H,t), can be calculated.
Therefore it is generally more convenient to recast Eq.~7! in
an equivalent Langevin form for the heighthi(t). In the Stra-
tonovich interpretation, the Langevin equation associated to
the Fokker-Planck equation is

]hi
]t

5Ki
~1!1h i , ~8!

where terms of orderO(1/V) have been neglected; cf.@24#.
In Eq. ~8!, hi is a continuous variable describing the dynam-
ics of the fluctuations of the height configurations
$h1(t), . . . ,hL(t)%, as obtained in the macroscopic limit
V→`; cf. @23# ~see also@5,21#!. The termh i is a Gaussian
white noise with average value equal to zero, and variance

^h i~ t !h j~ t8!&5Ki , j
~2!d~ t2t8!. ~9!

IV. DISCRETE LANGEVIN EQUATION

We now apply the formalism described in the preceding
section to the erosion model in@9#. The transition rate for the
erosion rule reads

We~H,H8!5
f

t(k PeYkd~hk8 ,hk2b!)
jÞk

d~hj8 ,hj !,

~10!

wheret is the time scale. The erosion probabilityPe can be
expressed in different forms. We choose

Pe5
1

7 S 51
a0
a2

¹2hi1a1Q D , ~11!

with the discrete Laplacian¹2hi5hi1122hi1hi21 , and
constantsa0 anda1. In Eq. ~11! the Laplacian accounts for
the physical mechanism of the box rule, and theQ term
accounts for the finite size of the box. Definingu(x)51 for
x>0, andu(x)50 for x,0, theQ term can be written

Q52u~hi212hi22b!@hi212hi2b#2u~hi112hi22b!

3@hi112hi2b#1u~hi2hi2123b!@hi2hi2122b#

1u~hi2hi1123b!@hi2hi1122b#. ~12!

TheQ term in Eqs.~11! and~12! becomes effectively zero in
the hydrodynamic limit of the model where the surface
roughens in a way consistent with the KPZ universality class
and the slopes are small along the interface. Also, from the
numerical simulation@9# it is known that the qualitative be-
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havior of the model does not change if the size of the box is
enlarged@26#. The sputtering yield is obtained from Eq.~3!
as

Yi5y01
y1
a2

~¹hi !
21

y222y1/3

a4
~¹hi !

41•••, ~13!

with the discrete gradient¹hi5(hi112hi21)/2.
The transition rate for the diffusion rule reads

Wd~H,H8!5
12 f

2t (
k

@wk
1d~hk8 ,hk2b!d~hk118 ,hk111b!

1wk11
2 d~hk8 ,hk1b!d~hk118 ,hk112b!#

3 )
jÞk,k11

d~hj8 ,hj !, ~14!

wherewk
6 are defined in Eq.~4!. By expanding the transition

rateswk
6 we find

wk
65

1

11q
2
2bJq/b

~11q!2
~¹2hk2¹2hk61!

1 (
n52

Cn~q!

bn
~¹2hk2¹2hk61!

n, ~15!

where q[exp(6bJ), and Cn(q) are numerical constants
whose exact value will not be needed in what follows.

Using thatW(H,H8)5We(H,H8)1Wd(H,H8), and ex-
pression~5!, we obtain to lowest order the following values
for the transition moments:

Ki
~1!52

f b

t
PeYi2

~12 f !bJq

t~11q!2
¹2~¹2hi !, ~16a!

Ki , j
~2!52

~12 f !b2

t~11q!
¹2d i j1

f b2

t
PeYid i j . ~16b!

Here, ¹2d i j5d i11,j22d i , j1d i21,j . Higher order terms of
the form (¹2hi2¹2hi61)

2n11 have been omitted@in Sec. V
we will argue that such terms are irrelevant in the renormal-
ization group~RG! sense for the scaling properties of the
interface#. The quantityPeYi reads

PeYi5
5y0
7

1
y0a0
7a2

¹2hi1
5y1
7a2

~¹hi !
2, ~17!

with additional terms of the form (¹hi)
2m¹2hi .

The different terms appearing in Eq.~16! give rise to the
following contributions in the Langevin equation~8!: an ad-
ditive constant which corresponds to the average velocity of
erosion for a flat interface, a negative Laplacian which re-
flects the unstable nature of the erosion rule, and a (¹hi)

2

nonlinearity of the KPZ type describing lateral motion of the
interface@16#; the nonlinearity originates from the coefficient
y1 in expression~3! for the sputtering yield. In addition, the

diffusion rule contributes to Eq.~8! with the linear term
¹4hi ~plus higher order nonlinearities!. As demonstrated in
Ref. @21# by numerical simulations and shown using a
coarse-graining procedure, the¹4hi term originates from the
conserved nature of the surface diffusion rule~4! @5,21#.

V. CONTINUOUS LANGEVIN EQUATION

To obtain a continuous Langevin equation, we assume
that the discrete functionhi(t) can be replaced by a smooth
functionh(x,t) such thathi(t)5h(x5 ia,t), and further that

hi61~ t !2hi~ t !5 (
n51

`
~6a!n

n!

]nh

]xn U
x5 ia

. ~18!

A more rigorous way to arrive at the functionh(x,t) would
be through some coarse graining procedure which preserves
the symmetry of the problem. However, as discussed in
@5,21#, this is a highly nontrivial task. Here we are concerned
with the form of the relevant terms in the equation of motion
for h(x,t), which are expected to have the same form as
those obtained by the use of~18!. We will determine them as
the leading terms in an expansion in which we take the pa-
rametersa andb to be small but nonzero@28#. Combining
~18! with Eqs.~8! and~9! we obtain the continuous Langevin
equation forh(x,t):

]h

]t
5v02unu¹2h2k~¹2!2h1

l

2
~¹h!21h~x,t !

~19a!

1c1~¹h!2¹2h1c2~¹3h!2¹4h1•••, ~19b!

where now¹[]/]x. The noiseh(x,t) has correlations

^h~x,t !h~x8,t8!&5@2D22Dd¹
2#d~x2x8!d~ t2t8!

1@D1¹
2h1D2~¹h!2#d~x2x8!

3d~ t2t8!. ~20!

The coefficients in Eqs.~19! and ~20! read

v052
5 f y0b

7t
, unu5

f y0a0b

7t
, k5

~12 f !bJqa4

t~11q!2
,

l52
10f y1b

7t
, D5

5 f y0ab
2

14t
, Dd5

~12 f !a3b2

2t~11q!2
,

D15
f y0aa0b

2

7t
, D25

5 f y1ab
2

7t
. ~21!

The terms in Eq.~19a! constitute the noisy Kuramoto-
Sivashinsky equation~2!, where one notes the presence of a
negative Laplacian and a KPZ nonlinearity. The presence of
such a nonlinearity is known to determine the scaling behav-
ior of the noisy KS equation as shown by an RG analysis
@27#. Using the values of the roughness and dynamic expo-
nents at the KPZ fixed point@16#, the terms appearing in Eq.
~19b! can be shown to be irrelevant. A similar RG argument
shows the irrelevance of the conserved termDd in the noise
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correlator~20! in the presence of the shot noiseD, as well as
the irrelevance of the multiplicative contributionsD1 and
D2.

VI. CONCLUSIONS

In summary, we have derived the continuum equation for
a microscopic model for ion sputtering. The resulting equa-
tion is a noisy version of the Kuramoto-Sivashinsky equa-
tion. Such an equation exhibits the same scaling properties as
the Kardar-Parisi-Zhang equation and this result is in nice
agreement with the simulations of the erosion model per-

formed in Ref.@9#. The master equation approach has al-
lowed us to derive the form of the stochastic noise in the
Langevin equation for a simple pattern forming system.
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